

Structured Programming

First class

 Structured Programming First class

2

1.1 Introduction

 Many people use the Internet to look for information and to communicate with

others. This is all made possible by the availability of different software, also

known as computer programs. Without software, a computer is useless. Software is

developed by using programming languages. The programming language C++is

especially well suited for developing software to accomplish specific tasks. Our

main objective is to learn how to write programs in the C++programming

language. Before you begin programming, it is useful to understand some of the

basic terminology and different components of a computer.

A computer is an electronic device capable of performing commands. The basic

commands that a computer performs are input (get data), output (display result),

storage, and performance of arithmetic and logical operations.

Hardware is the collection of physical components that constitute a computer

system. Computer hardware is the physical parts or components of a computer

Software is programs written to perform specific tasks. For example, word

processors are programs that you use to write letters, papers, and even books. All

software is written in programming languages. There are two types of programs:

system programs and application programs.

System programs control the computer. The system program that loads first when

you turn on your PC is called the operating system. Without an operating system,

the computer is useless. The operating system monitors the overall activity of the

computer and provides services.

 Structured Programming First class

3

Application programs perform a specific task. Word processors, spreadsheets,

and games are examples of application programs. The operating system is the

program that runs application programs.

1.2 The Language of a Computer

When you press A on your keyboard, the computer displays A on the screen. But

what is actually stored inside the computer’s main memory? What is the language

of the computer? How does it store whatever you type on the keyboard?

 Digital signals are used inside the computer to process information. Digital

signals represent information with a sequence of 0s and 1s.

Because digital signals are processed inside a computer, the language of a

computer, called machine language, is a sequence of 0s and 1s. The digit 0 or 1 is

called a binary digit, or bit.

A computer program, or just a program, is a sequence of instructions, written to

perform a specified task with a computer.

Programming is the process of writing instructions for a computer in certain order

to solve a problem

A programming language is a formal constructed language designed to

create programs to control the behavior of a computer.

The lowest-level programming language is Machine language. It is the only

languages understood by computers. While easily understood by computers,

machine languages are almost impossible for humans to use because they consist

entirely of numbers.

 Programmers, therefore, use either a high-level programming language or

an assembly language. An assembly language contains the same instructions as a

http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Constructed_language
http://en.wikipedia.org/wiki/Program_(machine)
http://www.webopedia.com/TERM/P/programming_language.html
http://www.webopedia.com/TERM/L/language.html
http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/P/programmer.html
http://www.webopedia.com/TERM/A/assembly_language.html
http://www.webopedia.com/TERM/I/instruction.html

 Structured Programming First class

4

machine language, but the instructions and variables have names instead of being

just numbers.

Programs written in high-level languages are translated into assembly language or

machine language by a compiler. Assembly language programs are translated into

machine language by a program called an assembler. Figure 1-1 shows these

levels

Figure 1-1 The levels of programming languages

EXERCISE 1

1. Write handwritten essay about the evolution of programming language.

http://www.webopedia.com/TERM/V/variable.html
http://www.webopedia.com/TERM/N/name.html
http://www.webopedia.com/TERM/P/program.html
http://www.webopedia.com/TERM/H/high_level_language.html
http://www.webopedia.com/TERM/C/compiler.html
http://www.webopedia.com/TERM/A/assembler.html

 Structured Programming First class

5

1.3 Programming and Algorithm

Programming is a process of problem solving. Different people use different

techniques to solve problems. Some techniques are nicely outlined and easy to

follow. They not only solve the problem, but also give insight into how the

solution was reached.

 These problem-solving techniques can be easily modified if the domain of the

Problem changes. To be a good problem solver and a good programmer, you must

follow good problem solving techniques. One common problem-solving technique

includes analyzing a problem, outlining the problem requirements, and designing

steps, called an algorithm, to solve the problem.

Algorithm: A step-by-step problem-solving process in which a solution is arrived

at in a finite amount of time.

In a programming environment, the problem-solving process requires the

following three steps:

1. Analyze the problem, outline the problem and its solution requirements,

 and design an algorithm to solve the problem.

2. Implement the algorithm in a programming language, such as C++, and

 verify that the algorithm works.

3. Maintain the program by using and modifying it if the problem domain

 changes.

Figure 1-2 summarizes this three-step programming process.

 Structured Programming First class

6

Figure 1-2 programming process

1.4 Algorithms

Informally, an algorithm is any well-defined computational procedure that takes

some value, or set of values, as input and produces some value, or set of values, as

output. An algorithm is thus a sequence of computational steps that transform the

input into the output. The algorithm describes a specific computational procedure

for achieving that input/output relationship.

 Structured Programming First class

7

For Example:

Example 1: Algorithm Sam to go to school

Input: Sam in house

Output: Sam in school

Step1: start

Step2: Sam is leaved the house.

Step3: he walks down the street.

Step4: he Arrive to school

Step5: he goes through the door into the school

Step6: end

Example 2: Algorithm to find the sum of two numbers

Input: Two numbers.

Output: the sum of two numbers.

Step1: start

Step2: Read the Value of A and B.

Step3: SUM = A+B.

Step4: Display SUM

Step5: end

Example 3: Algorithm to find the multiply of two numbers

Input: Two numbers.

Output: the multiply of two numbers.

Step1: start

Step2: Read the Value of A and B.

Step3: PRODUCT = A*B.

Step4: Display PRODUCT

Step5: end

 Structured Programming First class

8

Example 4: Algorithm to find the division of two numbers

Input: Two numbers.

Output: the division of two numbers.

Step1: start

Step2: Read the Value of A and B.

Step3: DIV = A/B.

Step4: Display DIV.

Step5: end

Example 5: Algorithm to find the area of rectangle

Input: the length and the width of rectangle.

Output: the area of rectangle.

Step1: start

Step2: Read the Value of length and the width.

Step3: AREA = length * width.

Step4: Display AREA.

Step5: end

EXERCISE 2:

1. Design an algorithm to find the sum of three numbers

2. Design an algorithm to find the multiply of three numbers

3. Design an algorithm to find the square of any number

4. Design an algorithm to find the root of any natural number

5. Design an algorithm to find the area of square

6. Design an algorithm to find the area triangle

7. Design an algorithm to find the circumference of circle

8. Design an algorithm to find the value of Z

 Structured Programming First class

9

Where z =3X+5Y

9. Design an algorithm to find the value of Z

Where z =𝑋3+𝑋2

10. Design an algorithm to find the value of Z :Where z =𝑋3+𝑋2/2

1.5 C++Programming Languages:

C++ (pronounced cee plus plus) is a general purpose programming language.

C++is not a completely new language. It can be thought of more as an evolutionary

advancement of C. Both languages share the fundamental concepts for using

statements, data types, operators, function definition.

EXERCISE 3:

1. Write a handwritten essay about the history of C++.

1.6 C++Program Development Process (PDP):

C++programs typically go through six phases before they can be executed. These

phases are:

1. Edit: The programmer types a C++source program, and makes correction, if

necessary. Then file is stored in disk with extension (.cpp).

 ((Source program: A program written in a high-level language)).

2. The C++program given in the preceding section contains the statement

 #include <iostream>. In a C++program, statements that begin with the

 symbol # are called preprocessor directives. These statements are processed by

 A program called preprocessor.

3. the next step is to verify that the program obeys the rules of the programming

language—that is, the program is syntactically correct—and translate the

program into the equivalent machine language. The compiler checks the source

http://en.wikipedia.org/wiki/Programming_language

 Structured Programming First class

10

program for syntax errors and, if no error is found, translates the program into

the equivalent machine language. The equivalent machine language program is

called an object program.

 ((Object program: The machine language version of the high-level language program.))

4. Linking: The programs that you write in a high-level language are developed

using an integrated development environment (IDE). The IDE contains many

programs that are useful in creating your program. For example, it contains the

necessary code (program) to display the results of the program and several

mathematical functions to make the programmer’s job somewhat easier.

Therefore, if certain code is already available, you can use this code rather than

writing your own code. Once the program is developed and successfully

compiled, you must still bring the code for the resources used from the IDE

into your program to produce a final program that the computer can execute.

This prewritten code (program) resides in a place called the library. A

program called a linker combines the object program with the programs from

libraries.

 ((Linker: A program that combines the object program with other programs in the library

 and is used in the program to create the executable code.))

5. Loading: You must next load the executable program into main memory for

execution. A program called a loader accomplishes this task.

 ((Loader: A program that loads an executable program into main memory.))

6. The final step is to execute the program. Figure 1-2 shows how a typical C++

program is processed.

 Structured Programming First class

11

 FIGURE 1-2 processing a C++program

1.7 Structure of C++ program

 Atypical C++ program is consists of two parts:

1. The global part contains necessary declarations, definitions, and files needed

by the entire program.

2. The main function, referred to as main(), is the most important part, the

program execution starts with this function.

 Structured Programming First class

12

 Example 6: a C++ program that displays “hello, world” on the screen.

#include <iostream.h> // global part

void main() // function heading

{ // start of function body

 cout << " hello, world "; // message

} // end of function body

The output of this program is:

 hello, world

The comment after “//” symbols extends to the end of the line, comments are

helpful remarks that appear in the program listing but have no effect on the way the

program runs.

C++ is case-sensitive; that is, it distinguishes between uppercase characters and

lowercase characters. This means you must be careful to use the same case as in

the examples. For example, this program uses cout. If you substitute Cout or

COUT, the compiler rejects your offering and accuses you of using unknown

identifiers. (The compiler also is spelling-sensitive, so don't try kout or coot,

either.)

Global part include stream I/O header file which, among several other things,

contains the definition needs to allow the program to read input and write output.

 Structured Programming First class

13

The function main() is the major function that points to the place in the program

where execution starts. The body of the function _a group of statements that

specify the actions to be performed _ is enclosed between two curly braces {}.

The cout is used for output, it is to print out the desired message.

Example 7: a C++ program to display your name and age in different lines.

#include <iostream.h> // global part

void main() // function heading

{ // start of function body

 cout << " Ali "; // name

 cout <<”\n18”; //age

} // end of function body

The output of this program is

Ali

18

Example 8: a C++ program to display four lines of text, including the sum of two

numbers.

#include <iostream> // global part

void main() // function heading

{

cout << "My C++ program." << endl;

cout << "The sum of 2 and 3 = " << 5 << endl;

cout << "7 + 8 = " << 7 + 8 << endl;

}

 Structured Programming First class

14

When you compile and execute this program, the following lines are

displayed on the screen:

My C++ program.

The sum of 2 and 3 = 5

7 + 8 = 15

These lines are displayed by the execution of the following statements.

cout << "My C++ program." << endl;

cout << "The sum of 2 and 3 = " << 5 << endl;

cout << "7 + 8 = " << 7 + 8 << endl;

Next, we explain how this happens. Let us first consider the following statement:

cout << "My C++ program." << endl;

This is an example of a C++ output statement. It causes the computer to evaluate

the expression after the pair of symbols << and display the result on the screen.

Usually, a C++ program contains various types of expressions such as:

1. Arithmetic expressions are evaluated according to rules of arithmetic

operations, which you typically learn in algebra. For example, 7 + 8 is arithmetic

expression

2. Anything in double quotes is a string. For example, "My C++ program." and "7

+ 8 = " are strings. Typically, a string evaluates to itself.

Also note that in an output statement, “endl” causes the insertion point to move to

the beginning of the next line. (On the screen, the insertion point is where the

cursor is.) Therefore, the preceding statement causes the system to display the

following line on the screen.

 Structured Programming First class

15

My C++ program.

Let us now consider the following statement.

cout << "The sum of 2 and 3 = " << 5 << endl;

This output statement consists of two expressions. The first expression (after the

first <<) is "The sum of 2 and 3 = " and the second expression (after the second

<<) consists of the number 5.

The expression "The sum of 2 and 3 = " is a string and evaluates to itself. The

second expression, which consists of the number 5 evaluates to 5. Thus, the output

of the preceding statement is:

The sum of 2 and 3 = 5

Let us now consider the following statement.

cout << "7 + 8 = " << 7 + 8 << endl;

In this output statement, the expression "7 + 8 = ", which is a string, evaluates to

itself. Let us consider the second expression, 7 + 8. This expression consists of the

numbers 7 and 8 and the C++ arithmetic operator +. Therefore, the result of the

expression 7 + 8 is the sum of 7 and 8, which is 15. Thus, the output of the

preceding statement is:

7 + 8 = 15

EXERCISE 3:

1- Write a C++ program that displays your name, your age and your birthday.

2- Write a C++ program to solve the following expression:

200+500 30*76 40+50-7 7/3 500-600*40 10+43-87*40

3- Write a C++ program that displays that pattern:

1*2*3*4*5*6

 Structured Programming First class

16

4-Write a C++ program that displays that pattern:

5-Write a C++ program that displays that pattern:

1.8 Token

 The smallest individual unit of a program written in any language is called a

token. C++’s tokens are divided into special symbols, keyword, and identifiers.

1.8.1 Special symbols

Following are some of the special symbols:

1. Mathematical symbols for addition, subtraction, multiplication, and division

+ - * /

2. Punctuation marks taken from English grammar.

. ; ? ,

 In C++, commas are used to separate items in a list. Semicolons are used to

 end a C++ statement.

 Structured Programming First class

17

3. Blank is also a special symbol. You create a blank symbol by pressing the

space bar (only once) on the keyboard.

 4. Tokens made up of two characters that are regarded as a single symbol. No

 character can come between the two characters in the token, not even a blank.

<= != == >=

1.8.2 Reserved Words (Keywords)

Reserved words are also called keywords. The letters that make up a reserved word

are always lowercase. Like the special symbols, each is considered to be a single

symbol. Furthermore, word symbols cannot be redefined within any program; that

is, they cannot be used for anything other than their intended use. Some of

C++Language Reserved Words:

break case char cin cout

delete

double else enum false

float for goto if int

long main private public short

sizeof switch true union void

1.8.3 Identifiers

Identifiers are names of things that appear in programs, such as variables,

constants, and functions. All identifiers must obey C++’s rules for identifiers. A

C++ identifier consists of letters, digits, and the underscore character (_) and must

begin with a letter or underscore. Examples of Illegal Identifiers:

 Structured Programming First class

18

Illegal Identifier Description

employee Salary There can be no space between employee and Salary

Hello! The exclamation mark cannot be used in an identifier.

one + two The symbol + cannot be used in an identifier.

2nd An identifier cannot begin with a digit.

1.9 Simple Variables

 Programs typically need to store information. To store an item of information in

a computer, the program must keep track of three fundamental properties:

 Where the information is stored(name of variable)

 What value is kept there

 What kind of information is stored(data type)

Example 9:

int count =5;

Where int is the kind of information, count is name of information, 5 is value of

information.

1.9 .1 Integer Variables

Integer variables are variables that can have only values that are whole numbers.

The number of players in a football team is an integer. You already know that you

can declare integer variables using the keyword int . Variables of type int occupy 4

bytes in memory and can store both positive and negative integer values. The

upper and lower limits for the values of a variable of type int correspond to the

maximum and minimum signed binary numbers, which can be represented by 32

bits. Here is an example of defining a variable of type int :

 Structured Programming First class

19

int num=0; int length;

int sum; int toeCount = 10;

Example 10: A C++ program to add two numbers.

#include <iostream.h> // global part

void main() // function heading

{

int first_num;

int second_num;

first_num=5;

second_num=6;

cout<<” first_num+ second_num=”;

cout<< first_num+ second_num;

}

The output of this program is

first_num+ second_num=11

1.9 .2 Character Data Types

The char data type serves a dual purpose. It specifies a one - byte variable that you

can use either to store integers within a given range, or to store the code for a

single ASCII character, which is the American Standard Code for Information

Interchange. You can declare a char variable with this statement:

char letter = 'A';

 Structured Programming First class

20

This declares the variable with the name letter and initializes it with the constant

‘ A ’ . Note that you specify a value that is a single character between single

quotes.

Because the character ‘ A ’ is represented in ASCII by the decimal value 65, you

could have written the statement as:

char letter = 65; // Equivalent to A

Examble11: A C++ program to display ASCII number for M

#include <iostream>

void main()

{

 char c = 'M'; // assign ASCII code for M to c

 int i = c; // store same code in an int

 cout << "The ASCII code for " << c << " is " << i << "\n";

 cout << "Add one to the character code:\n";

 c = c + 1;

 i = c;

 cout << "The ASCII code for " << c << " is " << i << '\n';

}

Here is the output:

The ASCII code for M is 77

Add one to the character code:

The ASCII code for N is 78

1.9 .3The Boolean Type

Boolean variables are variables that can have only two values: a value called true

and a value called false. The type for a logical variable is bool, named after George

Boole, who developed Boolean algebra, and type bool is regarded as an integer

type. Boolean variables are also referred to as logical variables. Variables of type

 Structured Programming First class

21

bool are used to store the results of tests that can be either true or false, such as

whether one value is equal to another. You could declare the name of a variable of

type bool with the statement:

bool testResult;

Of course, you can also initialize variables of type bool when you declare them:

bool colorIsRed = true;

bool isready = true;

bool isready = false;

bool isready = -100; // isready = true

bool isready = 0; // isready = false

1.9 .4 Floating - Point Types

Values that are not integral are stored as floating - point numbers. A floating -

point number can be expressed as a decimal value such as 112.5, or with an

exponent such as 1.125E2 where the decimal part is multiplied by the power of 10

specified after the E (for Exponent). Our example is, therefore, 1.125 × 10 2 ,

which is 112.5.You can specify a floating - point variable using the keyword

double , as in this statement:

double in_to_mm = 25.4;

A variable of type double occupies 8 bytes of memory and stores values accurate

to approximately 15 decimal digits.

If you don ’ t need 15 digits’ precision, and you don ’ t need the massive range of

values provided by double variables, you can opt to use the keyword float to

declare floating - point variables occupying 4 bytes. For example:

float pi = 3.14159

 Structured Programming First class

22

Example 12: A C++ program to add two floating – point numbers.

#include <iostream.h> // global part

void main() // function heading

{

double first_fnum;

double second_fnum;

first_fnum=5.3;

second_fnum=6.5;

cout<<” first_fnum+ second_fnum=”;

cout<< first_fnum+ second_fnum;

}

The output of this program is

first_fnum+ second_fnum=11.8

1.10 Input

The main objective of a C++ program is to perform calculations and manipulate

data. Recall that data must be loaded into main memory before it can be

manipulated. In this section, you will learn how to put data into the computer’s

memory. Storing data in the computer’s memory is a two-step process:

1. Instruct the computer to allocate memory.

2. Include statements in the program to put data into the allocated memory.

1.10.1 Allocating Memory with Constants and Variables

When you instruct the computer to allocate memory, you tell it not only what

names to use for each memory location, but also what type of data to store in those

memory locations. Knowing the location of data is essential, because data stored in

one memory location might be needed at several places in the program. Knowing

 Structured Programming First class

23

what data type you have is crucial for performing accurate calculations. It is also

critical to know whether your data needs to remain fixed throughout program

execution or whether it should change. Some data must stay the same throughout a

program. For example, the pay rate is usually the same for all part-time employees.

A conversion formula that converts inches into centimeters is fixed, because 1 inch

is always equal to 2.54 centimeters. When stored in memory, this type of data

needs to be protected from accidental changes during program execution. In C++,

you can use a constant to instruct a program to mark those memory locations in

which data is fixed throughout program execution.

Constant: A memory location whose content is not allowed to change during

program execution.

To allocate memory, we use C++’s declaration statements. The syntax to declare a

Constant is:

const dataType identifier = value;

In C++, const is a reserved word.

Example 13: Consider the following C++ statements:

const double CONVERSION = 2.54;

const int NO_OF_STUDENTS = 20;

const char BLANK = ' ';

The first statement tells the compiler to allocate memory (eight bytes) to store a

value of type double, call this memory space CONVERSION, and store the value

2.54 in it.

Throughout a program that uses this statement, whenever the conversion formula is

needed, the memory space CONVERSION can be accessed. The meaning of the

other statements is similar.

 Structured Programming First class

24

Using a named constant to store fixed data, rather than using the data value itself,

has one major advantage. If the fixed data changes, you do not need to edit the

entire program and change the old value to the new value wherever the old value is

used. Instead, you can make the change at just one place, recompile the program,

and execute it using the new value throughout. In addition, by storing a value and

referring to that memory location whenever the value is needed, you avoid typing

the same value again and again and prevent accidental typos. If you misspell the

name of the constant value’s location, the computer will warn you through an error

message, but it will not warn you if the value is mistyped.

 In some programs, data needs to be modified during program execution. For

example, after each test, the average test score and the number of tests taken

changes. Similarly, after each pay increase, the employee’s salary changes. This

type of data must be stored in that memory cells whose contents can be modified

during program execution. In C++, memory cells whose contents can be modified

during program execution are called variables.

Variable: A memory location whose content may change during program

execution.

The syntax for declaring one variable or multiple variables is:

dataType identifier, identifier, . . .;

Example 14:

Consider the following statements:

double amountDue;

int counter;

char ch;

int x, y;

The first statement tells the compiler to allocate enough memory to store a value of

 Structured Programming First class

25

the type double and call it amountDue. The second and third statements have

similar conventions. The fourth statement tells the compiler to allocate two

different memory spaces, each large enough to store a value of the type int; name

the first memory space x; and name the second memory space y.

1.10.2 Putting Data into Variables

Now that you know how to declare variables, the next question is: How do you put

data into those variables? In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement: it takes the following form:

variable = expression;

In an assignment statement, the value of the expression should match the data

type of the variable. The expression on the right side is evaluated, and its value is

assigned to the variable (and thus to a memory location) on the left side. A

variable is said to be initialized the first time a value is placed in the variable. In

C++, “=” is called the assignment operator.

Example 13: a C++ program illustrates how data in the variables are manipulated.

#include <iostream>

void main()

{

int num1, num2; //statement 1

double sale; //statement 2

char first; //statement 3

num1 = 4; //statement 4

cout << "num1 = " << num1 << endl; //statement 5

num2 = 4 * 5 - 11; //statement 6

cout << "num2 = " << num2 << endl; //statement 7

sale = 0.02 * 1000; //statement 8

cout << "sale = " << sale << endl; //statement 9

first = 'D'; //statement 10

cout << "first = " << first << endl; //statement 11

}

 Structured Programming First class

26

The output of this program is

num1 = 4

num2 = 9

sale = 20

first = D

Let us take a look at the output statement:

cout << " num1 = " << num1 << endl;

This output statement consists of the string " num1 = ", the operator <<, and the

variable num1. Here, first the value of the string " num1 = " is output, and then the

value of the variable num1 is output. The meaning of the other output statements is

similar.

The following table shows the values of the variables after the execution of each

statement.

Number of

statement

Values of the Variables Explanation

After statment1 ? ?

 num1 num2

 Allocate memory to

num1 and num2

After statment2 ? ? ?

 num1 num2 sale

Allocate memory to sale

After statement3 ? ? ? ?

 num1 num2 sale first

Allocate memory to first

After statement4 4 ? ? ?

 num1 num2 sale first

value is assigned to num1

 Structured Programming First class

27

After statement6 4 9 ? ?

 num1 num2 sale first

 4*5 =20: 20-11=9

This value is assigned to

num2

After statement8 4 9 20 ?

 num1 num2 sale first

0.02*1000=20

This value is assigned to

sale

After

statment10

4 9 20 D

 num1 num2 sale first

value is assigned to first

Example 14: a C++ program illustrates how data in the variables are manipulated.

#include <iostream>

void main()

{

int num1, num2,num3; //statement 1

num1 = 18; //statement 2

num1 = num1 + 27; //statement 3

num2 = num1; //statement 4

num3 = num2 / 5; //statement 5

num3 = num3 / 4; //statement 6

cout << "num1 = " << num1 <<” ,num2= ”<<num2<<” ,nnum3= “<<num3;

}
The output of this program is

num1 = 45, num2 = 45, and num3 = 2.

The following table shows the values of the variables after the execution of each

statement.

 Structured Programming First class

28

Number of

statement

Values of the Variables Explanation

After

statment1

? ? ?

 num1 num2 num3

Allocate memory to

num1,num2 and num3

After

statement2

18 ? ?

 num1 num2 num3

value is assigned to num1

After

statement3

45 ? ?

 num1 num2 num3

num1 + 27 = 18 + 27 = 45.

This value is assigned to num1,

which replaces the old value of

num1.

After

statement4

45 45 ?

 num1 num2 num3

 Copy the value of num1 into

num2

After

statement5

45 45 9

 num1 num2 num3

num2 / 5 = 45 / 5 = 9. This

value is assigned to num3. So

num3

= 9.

After

statment6

45 45 2

 num1 num2 num3

num3 / 4 = 9 / 4 = 2. This

value is assigned to num3,

which

replaces the old value of num3.

 Structured Programming First class

29

2- Input (Read) Statement:

Previously, you learned how to put data into variables using the assignment

statement. In this section, you will learn how to put data into variables from the

standard input device, using C++’s input (or read) statements.

When the computer gets the data from the keyboard, the user is said to be acting

interactively. Putting data into variables from the standard input device is

accomplished via the use ofcin and the operator >>.

 The syntax of cin together with >> is:

cin >> variable >> variable ...;

This is called an input (read) statement.

Example 15: A C++ program illustrates how input statements work

#include <iostream>

void main()

{

int feet;

int inches;

cout << "Enter two integers separated by spaces: ";

cin >> feet >> inches;

cout << endl;

cout << "Feet = " << feet << endl;

cout << "Inches = " << inches << endl;

}

The output of this program is (the user input is shaded.)

Enter two integers separated by spaces: 23 7

Feet = 23

Inches = 7

 Structured Programming First class

30

 Example 16: A C++ program illustrates how assignment statements and input

statements manipulate variables.

#include <iostream>

void main()

{

int fNum, sNum; //statement 1

double z; //statement2

char ch; //statement3

fNum = 4; //statement4

sNum = 2 *fNum + 6; //statement5

z = (fNum + 1) / 2.0; //statement6

ch = 'A'; //statement7

cin >> sNum; //statement8

cin >> z; //statement9

fNum = 2 *sNum; //statement10

sNum = sNum + 1; //statement11

cin >> ch; //statement12

fNum = fNum + 8; //statement13

 z = fNum - z; //statement14

cout<<”the output of that program is : ”; //statement15

cout<< fNum<<” “<<sNum<<” “<<z<<” “<<ch }

The output of this program is (the user input is shaded.)

40 20.5 r

the output of that program is : 88 41 67.5 r

The following table shows the values of the variables after the execution of each

statement.

 Structured Programming First class

31

After

st.

Values of the Variables Explanation

St1 ? ?

 fNum1 sNum2

Allocate memory to fNum1 and sNum2

St2 ? ? ?

 fNum1 sNum2 z

Allocate memory to fNum1 , sNum2 and z

St3 ? ? ?

 fNum1 sNum2 z ch

Allocate memory to fNum1 , sNum2 , z

and ch

St4 4 ? ? ?

 fNum1 sNum2 z ch

Store 4 into firstNum.

St5 4 14 ? ?

 fNum1 sNum2 z ch

2 * firstNum + 6 = 2 * 4+ 6 = 14.

Store 14 into secondNum.

St6 4 14 2.5 ?

 fNum1 sNum2 z ch

(firstNum + 1) / 2.0 = (4 + 1) / 2.0 = 5 / 2.0

= 2.5.

 Store 2.5 into z.

St7 4 14 2.5 A

 fNum1 sNum2 z ch

Store 'A' into ch.

St8 4 40 2.5 A

 fNum1 sNum2 z ch

Read a number from the keyboard (which

is 40) and store it into sNum.

 This statement replaces the old value of

sNum with this new value.

St9 4 40 20.5 A

 fNum1 sNum2 z ch

Read a number from the keyboard (which

is 20.5) and store this number into z.

This statement replaces the old value of z

with this new value.

 Structured Programming First class

32

St10 80 40 20.5 A

fNum1 sNum2 z ch

2 * sNum =80

This statement replaces the old value of

fNum with this new value

St11 80 41 20.5 A

fNum1 sNum2 z ch

sNum + 1 = 40 + 1 = 41.

Store 9 into secondNum.

St12 80 41 20.5 r

fNum1 sNum2 z ch

Read the next input from the keyboard

(which is r) and store it into ch.

This statement replaces the old value of ch

with the new value.

St13 88 41 20.5 r

fNum1 sNum2 z ch

fNum+1=80+1=88

This statement replaces the old value of ch

with the new value.

St14 88 41 67.5 r

fNum1 sNum2 z ch

fNum-z=88-20.5=67.5

This statement replaces the old value of ch

with the new value.

EXERCISE 4:

1- Resolve the problems in ” exercise 2” using C++ language, use read and write

statements

2- Design an algorithm to takes distance between two cities in km and converts it

in meter, cm, inch and feet.

3- Write a C++ program which takes distance between two cities in km and

converts it in meter, cm, inch and feet

 Structured Programming First class

33

4- What is the output of the following program?

#include <iostream>

void main()

{

int fNum, sNum; //statement 1

double z; //statement2

char ch; //statement3

fNum = 100; //statement4

sNum = (200+fNum)/ 10; //statement5

z = (fNum + 3) / 2.0; //statement6

ch = 'b';

ch=ch+1; //statement7

ch=ch+1; //statement8

ch=ch-2; //statement9

cin >> sNum; //statement10

fNum = 10*sNum; //statement11

sNum = fNum; //statement12

cin >> ch; //statement13

ch=ch+1; //statement14

fNum = fNum + 8; //statement15

 z = z*2.7; //statement16

cout<<”the output of that program is : ”;

cout<< fNum<<” “<<sNum<<” “<<z<<” “<<ch }

 Show the values of the variables after the execution of each statement.

1.11 Operators

 When you write a program, you use variable names to create locations where

you can store data. You can use assignment and input statements to provide values

for the variables, and you can use output statements to display those values on the

screen. In most programs that you write, you want to do more than input and

output variable values. You also might want to evaluate those values and create

 Structured Programming First class

34

expressions that use the values. For example, you might want to perform arithmetic

with values, or base decisions on values that users input.

In this section, you learn to use the C++ operators to create arithmetic expressions

and study the results they produce. You also learn about the valuable shortcut

arithmetic operators in C++. Then you concentrate on Boolean expressions you can

use to control C++ decisions and loops—the topics of the next two chapters.

1.11.1 USING C++ BINARY ARITHMETIC OPERATORS

C++ provides five simple arithmetic operators for creating arithmetic expressions:

operator description

+ the addition operator

- the subtraction operator

* the multiplication operator

/ the division operator

% the modulus operator

Each of these symbols is an arithmetic operator—a symbol that performs

arithmetic. Each is also a binary operator—an operator that takes two operands,

one on each side of the operator, as in 12 + 9 or 16.2 * 1.5.

The results of an arithmetic operation can be used immediately or stored in

computer memory, in a variable.

 Structured Programming First class

35

 Example17:

#include<iostream>

void main()

{

cout << 12 + 9 << endl; // displays the value 21

int sum = 12 + 9; // calculates sum whose value becomes 21

cout << sum << endl; // displays the value of sum

}

 each cout statement in the program produces the value 21 as output, as you can see

in Example17.

1- In the first statement within the main()function, the result, 21, is calculated

within the cout statement and output immediately, without being stored.

2- In the second cout statement, the value of a variable is shown. The advantage

to this approach is that the result of the addition calculation is stored in the

variable named sum, and can be accessed again later within the same program,

if necessary. For example, you might need sum again if its value is required as

part of a subsequent calculation.

 Example18:

#include<iostream>

void main()

{

int sum = 12 + 9; // calculates sum whose value becomes 21

int avg=sum/2;

cout << avg<< endl; // displays the value of sum

}

Addition, subtraction, multiplication, division, or modulus of any two integers

results in an integer. For example, the expression 7 + 3 results in 10, 7 – 3 results

in 4, and 7 * 3 results in 21. These results are the ones you might expect, but the

result of integer division is less obvious. For example, the expression 7 / 3 results

 Structured Programming First class

36

in 2, not 2.333333. When two integers are divided, the result is an integer, so any

fractional part of the result is lost.

If either or both of the operands in addition, subtraction, multiplication, or division

is a floating-point number (that is, at least one operand is a float or a double),

then the result is also a floating-point number. For example, the value of the

expression:

3.2 * 2 is the floating-point value 6.4

 because at least one of the operands is a floating-point number. Similarly, the

result of:

3.2 / 2 is 1.6.

 When at least one of the operands in division is a floating-point value, then the

result is floating point, and the fractional part is not lost.

Examble19: C++ program shows some arithmetic examples and explains the

computed results .

#include<iostream>

void main()

{

int a = 2, b = 4, c = 10, intResult;

double d = 2.0, e = 4.4, f = 12.8, doubleResult;

float g = 2.0f, h = 4.4f, i = 12.8f, floatResult;

intResult = a + b;

cout << intResult << endl;

// result is 6, an int

// because both operands are int

intResult = a * b;

cout << intResult << endl;

// result is 8, an int

// because both operands are int

 Structured Programming First class

37

intResult = c / a;

cout << intResult << endl;

// result is 5, an int

// because both operands are int

intResult = c / b;

cout << intResult << endl;

// result is 2 (losing the decimal fraction),

// an int, because both operands are int

floatResult = g / a;

cout << floatResult << endl;

// result is 1.0, a float,

// because the operands are int and float

floatResult = h / g;

cout << floatResult << endl;

// result is 2.2, a float,

// because both operands are floats

doubleResult = a * d;

cout << doubleResult << endl;

// result is 4.0, a double

// because the operands are int and double

// However, the result displays without the

// unneeded decimal point and fractional part

doubleResult = f / a;

cout << doubleResult << endl;

// result is 6.4, a double

// because the operands are int and double

doubleResult = e + h;

cout << doubleResult << endl;

// result is 8.8, a double,

// because operands are float and double

}

USING MODULUS

The modulus operator (%) gives the remainder of integer division; it can be used

only with integers. The expression:

7 / 3 results in 2

 Structured Programming First class

38

The expression:

7 % 3 results in 1

17 % 5 is 2

You can pronounce 7 % 3 as “seven modulus three” or “seven mod three.”

The modulus operator proves useful in a variety of situations. For example:

1-if you determine the remainder of dividing by 2, you can determine whether any

value is even or odd. Any number with a remainder of 0 when divided by 2 is even,

and any number with a remainder of 1 when divided by 2 is odd.

2-in time calculations, any integer number of minutes divided by 60 indicates

the number of hours, and the result of modulus by 60 indicates the number of

minutes left over. In the following code, the value of hours is 3 and the value of

extra Minutes is 7:

int minutesOnTheJob = 187;

int hours = minutesOnTheJob / 60;

int extraMinutes = minutesOnTheJob % 60;

3- Similar calculations can be made to determine how many dozens (12), scores

(20), or thousands (1000) are contained in a number, and how many remain

4-When using the decimal numbering system, if you need to know a number’s last

digit, you can perform modulus by 10. For example, 6543 % 10 is 3 and 6789 %

10 is 9. Similarly, you can extract the last two digits from a decimal number by

using modulus 100.

 Structured Programming First class

39

PRECEDENCE AND ASSOCIATIVITY OF ARITHMETIC OPERATIONS

When more than one arithmetic operator is included in an expression, then

multiplication, division, and modulus operations always occur before addition or

subtraction. Multiplication, division, and modulus are said to have higher

arithmetic precedence; that is, they are performed first in an arithmetic statement

with multiple operations. Addition and subtraction operations have lower

precedence. When two operations with the same precedence appear in an

arithmetic expression, the operations are carried out in order from either left to

right or right to left based on their associativity—the rule that dictates the order in

which an operator works with its operands. The associativity of arithmetic

operations (if there are no parentheses in the expression) is from left to right.

When C++ evaluates a mixed arithmetic expression, the following steps occur:

1. The leftmost operation with the highest precedence (*, /, and %) is evaluated. If

the data types of the operands on both sides of the operator are the same data type,

the result is the same data type. If the operands are different data types, then C++

performs an implicit cast and the result is the same type as the one that occupies

more memory.

2. Each subsequent *, /, or % operation is evaluated in the same manner from left

to right.

3. The leftmost operation with the lower precedence (+ and –) is evaluated. If the

data types of the operands on both sides of the operator are the same, the result is

the same data type. If the operands are different data types, then C++ performs an

implicit cast and the result is the same type as the one that occupies more memory.

4. Each subsequent + or – operation is evaluated in the same manner from left

to right.

 Structured Programming First class

40

Expression Value Comments

2 + 3 * 4.0 14.0 3 * 4.0 results in 12.0; then 2 + 12.0 results in 14.0

3 / 4 + 2.2 2.2 The result of integer division 3 / 4 is 0 (not 0.75); then

0 + 2.2 produces 2.2

3.0 / 4 +

2.2

2.95 The result of floating-point division 3.0 / 4 is 0.75;

then 0.75 + 2.2 produces 2.95

3.0 * 1.1 / 2 1.65 The multiplication result is 3.3; then the division result

is 1.65

3 / 2 * 5 / 2 2 The first integer division, 3 /2, results in 1 (not 1.5);

then 1 * 5 produces 5 and 5 / 2 results in 2 (not 2.5)

1.11.2 SHORTCUT ARITHMETIC OPERATORS

In addition to the standard binary arithmetic operators for addition, subtraction,

multiplication, division, and modulus, C++ employs several shortcut operators.

The two categories of shortcut arithmetic operators are compound assignment

operators and increment and decrement operators.

1-Compound assignment (+=, -=, *=, /=, %=)

Compound assignment operators modify the current value of a variable by

performing an operation on it. They are equivalent to assigning the result of an

operation to the first operand:

expression Equivalent to...

y += x; y = y + x;

x -= 5; x = x - 5;

x /= y; x = x / y;

price *= units + 1; price = price * (units+1);

 Structured Programming First class

41

2-Increment and decrement (++, --)

The increment and decrement operators. These operators are used frequently by

C++ programmers and are useful programming tools.

Some expression can be shortened even more: the increase operator (++) and the

decrease operator (--) increase or reduce by one the value stored in a variable. They

are equivalent to +=1 and to -=1, respectively.

Suppose count is an int variable. The statement:

count = count + 1;

increments the value of count by 1. To execute this assignment statement, the

computer first evaluates the expression on the right, which is count + 1. It then

assigns this value to the variable on the left, which is count.

As you will see later, such statements are frequently used to keep track of how

many times certain things have happened. To expedite the execution of such

statements, C++ provides the increment operator, ++, which increases the value of

a variable by 1, and the decrement operator, – –, which decreases the value of a

variable by 1

Increment and decrement operators each have two forms, pre and post. The syntax

of the increment operator is:

Pre-increment: ++variable

Post-increment: variable++

The syntax of the decrement operator is:

Pre-decrement: ––variable

Post-decrement: variable––

Let’s look at some examples. The statement:

 Structured Programming First class

42

++count;

or:

count++;

increments the value of count by 1. Similarly, the statement:

––count;

or:

count––;

decrements the value of count by 1.

Because both the increment and decrement operators are built into C++, the value

of the variable is quickly incremented or decremented without having to use the

form of an assignment statement.

Now, both the pre- and post-increment operators increment the value of the

variable by 1. Similarly, the pre- and post-decrement operators decrement the value

of the variable by 1. What is the difference between the pre and post forms of these

operators? The difference becomes apparent when the variable using these

operators is employed in an expression.

Suppose that x is an int variable. If ++x is used in an expression, first the value of

x is incremented by 1, and then the new value of x is used to evaluate the

expression. On the other hand, if x++ is used in an expression, first the current

value of x is used in the expression, and then the value of x is incremented by 1.

The following example clarifies the difference between the pre- and post-

increment operators.

 Structured Programming First class

43

Notice the difference:

Example 1 Example 2

x = 3;

y = ++x;

// x contains 4, y contains 4

x = 3;

y = x++;

// x contains 4, y contains 3

In Example 1, The first statement assigns the value 3 to x. To evaluate the second

statement, which uses the pre-increment operator, first the value of x is

incremented to 4, and then this value, 4, is assigned to y. After the second

statement executes, both x and y have the value 4.

In Example 2, the first statement assigns 3 to x. In the second statement, the post-

increment operator is applied to x. To execute the second statement, first the value

of x, which is 3, is used to evaluate the expression, and then the value of x is

incremented to 4. Finally, the value of the expression, which is 3, is stored in y.

After the second statement executes, the value of x is 4, and the value of y is 3.

Example 20 : C++compound assignment operators

#include <iostream.h>

void main()

{

 int num

 cout << "Enter a number: ";

 cin >> num;

 cout << "\n num +=1 :" << num +=1 << "\n";

 cout << "\n num -=2: " << num -=2 << "\n";

 cout << "\n num *=1+3: " << num *=1+3 << "\n";

 cout << "\n num /=2 :" << num /=2 << "\n";

 cout << " num %=4 :" << num %=4 << "\n";

 }

 Structured Programming First class

44

If num=4 then the output of this program is:

Enter a number:4

num +=1 :5

num -=2 :3

num *=1+3: 6

num /=2 :3

num %=4 :0

1.11.3-Relational and comparison operators (==, !=, >, <, >=, <=)

 C++ employs the six binary relational operators listed in Table 2-2. Relational

operators are those that evaluate the relationship between operands. You use these

relational operators to evaluate Boolean expressions. A Boolean expression is one

that is interpreted to be true or false. The relational operators in C++are:

operator description

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

1- All false relational expressions are evaluated as 0. Thus, an expression such

as: 2 > 9 has the value 0. You can prove that 2 > 9 is evaluated as 0 by entering

the statement cout << (2 > 9); into a C++ program. A 0 appears as output.

 Structured Programming First class

45

2- All true relational expressions are evaluated as 1. Thus, the expression 9 > 2 has

the value 1. You can prove this by entering the statement cout << (9 > 2); into a

C++ program. A 1 appears as output.

3-The unary operator ! is the not operator; it means “the opposite of,” and

essentially reverses the true/false value of an expression. For example:

cout << (9 2); displays a 1 because “9 is greater than 2” is true. In contrast,

cout << !(9 > 2); displays a 0 because the value of !1 (“not one”) is 0.

4- The relational operator = = deserves special attention. Suppose two variables, q

and r, have been declared, and q = 7 and r = 8. The statement cout << (q == r);

produces 0 (false) because the value of q is not equivalent to the value of r. The

statement cout << (q = r);, however, produces 8. The single equal sign does not

compare two variables; instead, it assigns the value of the rightmost variable to the

variable on the left. Because r is 8, q becomes 8, and the value of the entire

expression is 8.

examples:

(7 == 5) // evaluates to false

(5 > 4) // evaluates to true

(3 != 2) // evaluates to true

(6 >= 6) // evaluates to true

(5 < 5) // evaluates to false

Suppose that a=2, b=3 and c=6, then:

(a == 5) // evaluates to false, since a is not equal to 5

(a*b >= c) // evaluates to true, since (2*3 >= 6) is true

(b+4 > a*c) // evaluates to false, since (3+4 > 2*6) is false
Exercise 5:

 Structured Programming First class

46

Exercise 5:

1- 1. Arithmetic operations, such as addition (+), subtraction (–), multiplication (*),

division (/), and modulus (%) that take two arguments use ___________ operators.

a. unary c. binary

b. summary d. Boolean

2. If either or both of the operands in addition, subtraction, multiplication, or

division is a floating-point number, that is, a float or a double, then the result is

___________ .

a. always an integer b. usually a floating-point number

c. always a floating-point number d. not mathematically defined

3- If c and d are integers, and d = 34, what is the value of c = d++?

a. 0 c. 34

b. 1 d. 35

4. Multiplication, division, and modulus are said to have ___________ than

addition and subtraction.

a. lower arithmetic precedence b. higher arithmetic precedence

c. lower associativity d. higher associativity

5. 1. Assume a, b, and c are integers, and that a = 0, b = 1, and c = 5. What is the

value of each of the following? (The answers are not cumulative; evaluate each

expression using the original values for a, b, and c.)

a. a + b b. a > b

c. 3 + b * c d. ++b

e. b++ f. b <= c

g. a > 5 h. ++a ==b

i. b != c j. b == c

 Structured Programming First class

47

k. b = c l. b / c

m. b % c n. b + c * 4 / 3 o. 22 / (c + 3)

6- Write a C++ program in which you declare a variable that holds an hourly wage.

Prompt the user to enter an hourly wage. Multiply the wage by 40 hours and print

the standard weekly pay.

7- Write a C++ program in which you declare variables that will hold an hourly

wage, a number of hours worked, and a withholding percentage. Prompt the user to

enter values for each of these fields. Compute and display net weekly pay, which is

calculated as hours times rate, minus the percentage of the gross pay that is

withholding.

8- Write a program that allows the user to enter two values. Display the results of

adding the two values, subtracting them from each other, multiplying them, and

dividing them.

9- Write a program for a bank that allows the user to enter an amount of money in

cents. Display the number of whole dollars the bank will give the customer in

exchange.

1.12 MAKING DECISIONS

Computer programs often seem smart because of their ability to use selections or

make decisions. Consider a medical program that diagnoses your ailment based on

a group of symptoms. Some programs make hundreds or thousands of decisions,

but no matter how many decisions a program requires, each one is simply a yes-or-

no decision. Computer circuitry consists of millions of tiny electronic switches,

 Structured Programming First class

48

and the state of each is on or off. This means that every decision boils down to on

or off, yes or no, 1 or 0.

C++ lets us perform selections in a number of ways including using the if and if-

else statements, the switch statement, and conditional operators. You also can

combine decisions using the logical AND and OR.

1.12.1 The Single- if

The primary C++ selection structure statement used to perform a single-alternative

selection is an if statement. One way to use an if is in a single-alternative

selection—one in which an action takes place only when the result of the decision

is true. It takes the form:

if (Boolean expression)

 action if true;

When you write an if statement, you use the keyword “if “, a Boolean expression

within parentheses, and any statement that is the action that occurs if the Boolean

expression is true. Figure 1-3 shows a diagram of the logic of the if statement.

 Figure1-3 Flowchart diagram of an if statement

 Structured Programming First class

49

Example 21: Algorithm to display a number if that number is negative

Input: number.

Output: display negative number only

Step1: start

Step2: Get the Value of A.

Step3: Find the negative number using the following formula:

 if (A is smaller than 0)

 Display A

Step4: end

Example 22: Algorithm to test if the student passes the exam

Input: Degree of the exam.

Output: display if the student is pass in exam

Step1: start

Step2: Get the Value of Degree.

Step3: Test the Degree:

 if (Degree is greater or equal than 50)

 The student is passing

Step4: end

Example 23:C++ program to display only even number.

#include <iostream.h>

void main()

{ int number;

 cout << "Enter an integer: ";

 cin >> number;

 if (number %2 =0)

 cout << endl<<"You entered an even number: " << number << endl;

 cout << "This statement is always executed."; }

 Structured Programming First class

50

If number =4 then the output of this program is:

Enter an integer: 4

You entered an even number: 4

This statement is always executed.

If number =3 then the output of this program is:

Enter an integer: 3

This statement is always executed.

Example 24: Consider the program shown in below. An insurance policy base

premium is set as $75.32. After the program prompts for and receives values for

the driver’s age and number of traffic tickets, several (shaded) decisions are made.

#include<iostream>

using namespace std;

void main()

{

int driverAge, numTickets;

double premiumDue = 75.32;

cout << "Enter driver's age ";

cin >> driverAge;

cout << "Enter traffic tickets issued ";

cin >> numTickets;

if(driverAge < 26)

 premiumDue += 100;

if(driverAge > 50)

 premiumDue -= 50;

if(numTickets == 2)

 premiumDue += 60.25;

cout << "Premium due is " << premiumDue << endl;

}

 Structured Programming First class

51

if the expression in the parentheses of any of the if statements is true, then the

statement following the if executes. For example, if the driverAge is less than 26,

then 100 is added to the premiumDue.

Sometimes you want to perform multiple tasks when a condition is met. For

example, suppose that when a driver is under 26, you want to add $100 to the

premium, but also display a message. If the execution of more than one statement

depends on the selection, then the resulting statements must be placed in a block

with curly braces as shown in below

if(driverAge < 26)

{

premiumDue += 100;

cout << "Young driver";

}

1.12.2The if-else structure

“If” takes one action when its Boolean expression is evaluated as true, and uses an

else clause to define the actions to take when the expression is evaluated as false. It

takes the form:

if (Boolean expression)

 action if true;

else

 action if false

Example 25: Program to check whether an integer is positive or negative

#include <iostream>

void main()

{

 int number;

 Structured Programming First class

52

 cout << "Enter an integer: ";

 cin >> number;

 if (number >= 0)

 cout << endl<<"You entered a positive integer: " << number << endl;

 else

 cout << "You entered a negative integer: " << number << endl;

 cout << "This line is always printed.";

 }

If number =-4 then the output of this program is:

Enter an integer: -4

You entered a positive integer: -4

This line is always printed.

If number =7 then the output of this program is:

Enter an integer: 7

You entered a negative integer: 7

This line is always printed.

Example 26: program uses an if-else structure. In the program, after the user

enters a character in the genderCode variable, the variable is tested to see if it is

equivalent to the character ‘F’. If it is, the output is the word “Female”, if it is not,

the output is “Male”.

#include<iostream.h>

void main()

{

char genderCode;

cout << "Enter F for female or M for male "<<endl;

cin >> genderCode;

if(genderCode == 'F')

 cout<< endl <<"Female" ;

else

 cout << endl << "Male" << endl; }

 Structured Programming First class

53

If genderCode =F then the output of this program is:

Enter F for female or M for male

F

Female

If genderCode =s then the output of this program is:

Enter F for female or M for male

s

Male

 Diagram of logic of (if-else) statement in Example 26

Exercise 6:

1-What is the output after executing the following segment of code?

int num = 10;

if (num > 10)

cout << "Yes" << endl;

else

cout << "No" << endl;

a. Yes b. No c. Yes and No d. nothing

 Structured Programming First class

54

2-What is the output after executing the following segment of code?

int num = 5;

if (num > 10)

cout << "Yes" << endl;

cout << "No" << endl;

a. Yes b. No c. Yes and No d. nothing

3- Design an algorithm to find the largest number between two numbers

4-write a C++ program that allows the user to enter two double values. Display one

of two messages: “The first number you entered is larger”, or “The first number

you entered is not larger”.

5. Write a program that allows the user to enter two double values. Display one of

three messages: “The first number you entered is larger”, “The second number you

entered is larger”, or “The numbers are equal”.

6-W rite a program that allows the user to enter two numeric values. Then let the

user enter a single character as the desired operation: ‘a’ for add, ‘s’ for subtract,

‘m’ for multiply, or ‘d’ for divide. Perform the arithmetic operation that the user

selects and display the results.

7-write a program for a college admissions office. The user enters a numeric high

school grade point average (for example, 3.2), and an admission test score. Print

the message “Accept” if the student meets either of the following requirements:

» A grade point average of 3.0 or above and an admission test score of at least 60

» A grade point average below 3.0 and an admission test score of at least 80

If the student does not meet either of the qualification criteria, print “Reject”.

8-write a program that asks the user to type a vowel from the keyboard. If the

character entered is a vowel, display “OK”; if it is not a vowel, display an error

message. Be sure to allow both uppercase and lowercase vowels.

